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1. INTRODUCTION

1.1 Objective

This document describes the dust retrieval algorithm (level 2) for IASI onboard Metop-A, B, and
C, developed at ULB (Clarisse et al., 2019) and for which an implementation at EUMETSAT has
been agreed in the frame of the AC SAF CDOP-4 project.

1.2 TASI instrument

[ASI is an infrared Fourier transform spectrometer developed jointly by CNES (the French space
agency) with support of the scientific community (for a review see Hilton et al. (2011)), and by
EUMETSAT. TASI is mounted on-board the European polar-orbiting Metop satellite with the
primary objective to improve numerical weather predictions, by measuring tropospheric
temperature and humidity with high horizontal resolution and sampling, with 1 km vertical
resolution, and with respectively 1 K and 10% accuracy (Camy-Peyret and Eyre, 1998). As a
second priority IASI contributes to atmospheric composition measurements for climate and
chemistry applications (Clerbaux et al., 2009). To reach these two objectives, IASI measures the
infrared radiation of the Earth’s surface and of the atmosphere between 645 and 2760 cm™ at
nadir and along a 2200 km swath perpendicular to the satellite track. A total of 120 views are
collected over the swath, divided as 30 arrays of 4 individual Field-of-views (FOVs) varying in
size from 36 x77 km? at nadir (circular 12 km diameter pixel) to 10 x 20 x = km? at the larger
viewing angle (ellipse-shaped FOV at the end of the swath). IASI offers in this standard observing
mode global coverage twice daily, with overpass times at around 9:30 and 21:30 mean local solar
time. The very good spatial and temporal sampling of IASI is complemented by fairly high
spectral and radiometric performances: the calibrated level 1C radiances are at 0.5 cm™ apodized
spectral resolution (the instrument achieves a 2 cm optical path difference), with an apodized
noise that ranges below 2500 cm™! between 0.1 and 0.2 K of a reference blackbody at 280 K
(Hilton et al., 2011).

1.3 Product characteristics overview and context

The algorithm is based on (1) a sensitive hyperspectral dust index and (2) the conversion of the
index to optical depth at 10 um. The dust index is derived from a Jacobian, encompassing a typical
infrared dust signature and a covariance matrix, derived from spectra without observable quantities
of dust. The conversion to optical depths (ODs) relies on a neural network (NN), trained from a
database of synthetic spectra, a CALIPSO dust climatology and IASI L2 meteorological data
(pressure, temperature, humidity profiles). This document gives a detailed description of all these
different aspects, and of the specific assumptions and known limitations of the IASI dust
algorithm.
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2. PREFACE

2.1 Retrieving aerosol in the infrared

Infrared sounders have historically mainly been used for (ice)cloud detection and retrieval, even
though it was recognised early on that the atmospheric window 750-1250 cm™! region is also sensitive
to mineral aerosol (windblown dust and volcanic ash). This is mainly the case because of the strong
Si-O resonance band situated around 1000 cm™ (Hoidale & Blanco, 1969; Volz, 1973; Toon et al.,
1977; Hunt, 1982). Infrared sounders offer complementary measurements of aerosols to UV/Vis
sounders, being able to measure in the absence of solar radiation (at night) and with enhanced
sensitivity to the coarse mode. High-resolution sounders in addition offer sensitivity to aerosol size;
altitude and composition (see next section). In this chapter, we give a brief overview of published
retrieval approaches of airborne minerals from hyperspectral infrared sounders.

2.2 Detection and aerosol type differentiation

Retrieval of aerosol properties in the infrared is often preceded by a detection and/or differentiation
phase, where observations are flagged for the presence of a certain type of aerosol. This has two
advantages; firstly, this avoids (often computationally expensive) full retrievals of observations
without detectable quantities of aerosol. Secondly, the retrieval itself can often be simplified if the
presence of one specific type of aerosol can be assumed. Current high resolution infrared sounders
such as AIRS or IASI are able to detect and differentiate a range of different aerosol types, such as
volcanic ash, windblown dust, smoke, sulphuric acid droplets, ammonium sulphate as was shown in
Clarisse et al. (2013). This study also presents an overview of the typical methods that are applied for
detecting aerosol in the infrared. Here we list the main approaches. Example references are also given,
where possible related to detection of mineral aerosol from hyperspectral sounders.

A. Feature detection. Typically, these methods work by setting thresholds on brightness temperature
differences (BTD) (e.g. (DeSouza-Machado et al. 2006; Vandenbussche et al. 2013)). This is the
simplest, but perhaps also the most transparent detection method.

B. Distance measures, here the observed spectra are matched to spectra contained in look up tables
and then classified based on the results (e.g. (Clarisse et al., 2010a)).

C. Singular value decomposition and principal component analysis. These approaches have the
inherent advantage of relying on a large ensemble of (observed) spectra and exploiting a large
spectral range (e.g. (Hurley et al., 2009; Kliiser et al., 2011)).

D. Retrieval or pseudo-retrieval approaches. Here fitting techniques are directly used, either as a first
estimate of the quantity (and thus detection) or to circumvent the detection altogether.

The unified aerosol detection technique, which was presented in Clarisse et al. (2013), combines ideas
from B, C and D, and is the one used here. It will be summarized in section 4.

2.3 Retrieval and its challenges

At the core of almost all aerosol retrieval algorithms is a forward model that can model the outgoing
longwave radiation given suitable input parameters on the state of the surface and atmosphere. For
aerosols, it is important to take into account the effects of multiple scattering. The inverse model or
retrieval attempts to retrieve atmospheric (aerosol) properties from an observed spectrum. For
aerosols, the most common types of inverse models are those relying on spectral fitting, where the
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observed spectrum is iteratively matched with the simulated spectrum. The advantage of this
approach is that the background atmosphere can be fully taken into account; however, a major
disadvantage is its computational cost. Algorithms based on lookuptables (LUTs) are typically at least
an order of magnitude faster. These lookuptables contain precalculated spectra generated from a set
of different atmospheric/surface input parameters. The challenge for this approach is to make the
LUT representative enough for the range of observable spectra.

Whether a retrieval approach is based on spectral fitting or LUTSs, there are a number of key
parameters that need to be taken into account:

1. The source function (surface temperature and surface emissivity)

The source function determines how much radiation is emitted from the Earth and how much
will reach the aerosol layer. It is a vital parameter for the determination of an accurate OD.
The importance of surface emissivity cannot be underestimated as in the infrared it is
dependent on the wavenumber. Surface emissivity over ocean can be modelled but over land
spectrally, spatially and temporally resolved databases are required.

2. The aerosol layer temperature (or equivalently altitude)

This parameter determines how much radiation will be reemitted by the aerosol layer (for a
given OD). As the source function, the aerosol layer temperature is one of the most important
parameters.

3. The optical properties (aerosol refractive index, particle shape and size distribution).

Optical properties of the aerosol under consideration need to be known, so that observed
spectra can be accurately simulated with the forward model. The particle shape is usually
taken to be spherical for the retrieval of mineral aerosol in the infrared. The size distribution
is often assumed lognormal, whereas the effective radius is a parameter which is sometimes
included in the retrieval. It is not the most critical parameter for the estimation of the OD
though.

4. The background atmospheric state (trace gas profiles and temperature profiles)

Water vapour continuum especially can affect the baseline in the atmospheric window
drastically, and has to be accounted for in the retrieval. Depending on the choice of
wavelength range, also the variability of ozone needs to be considered.

5. Meteorological clouds

Either clouds should be taken into account in the retrieval or cloud free scenes have to be
determined.

Some of these key parameters can be retrieved simultaneously with the aerosol parameters of interest;
others are best obtained from auxiliary (third party) sources. While an accurate retrieval critically
hinges on the accurate knowledge of these, limited or uncertain knowledge of any of them can
sometimes be circumvented by selecting only a subset of the observed channels in the retrieval, which
minimizes the influence of the unknowns, while maximizing the sensitivity to the parameters of
interest. A summary of published retrieval methods and some of their characteristics is listed in Table
2.1.

The theoretical basis and practical implementation of the ULB NN algorithm will be outlined in the
next sections. Most of the information is taken from Clarisse et al. (2019) where the retrieval
algorithm is described in detail. The IASI instrument is described on Section 1.2. The choice of the
input parameters/auxiliary data for the algorithm described in this document will be justified and
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outlined in Section 3. The retrieval algorithm itself and a comprehensive error character

presented in Section 4. The output data format is presented in Section 5.
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Table 2.1 Overview of published dust retrieval algorithms for IASI/AIRS
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3. INPUT AND AUXILIARY DATA

3.1 Forward model parameters
3.1.1 Surface Parameters
3.1.1.1 Surface elevation

The first important parameter is the surface elevation, which was here taken from the “National
Geophysical Data Center TerrainBase Global DTM Version 1.0” and downloaded from
ftp://ftp.ngdc.noaa.gov/Solid Earth/cdroms/TerrainBase 94/. The used file is tbase.bin. This data is
also used for land/sea flagging. This data has a resolution of 05' 00" for both latitude and longitude.

3.1.1.2 Surface emissivity

For modelling water surface emissivity, very reliable models exist. Here we used the data from Nalli
et al. (2008) currently used in Community Radiative Transfer Model (CRTM) (data provided by Paul
van Delst, private communication). This emissivity data is dependent on the wavenumber, the
viewing angle and the wind surface speed. Because the latter is unknown, we used an average value
of 6m/s everywhere.

Land emissivity is more difficult to model, but there are now several datasets available that were
derived from IASI. Here the monthly climatology from Zhou et al. (2011) and Zhou et al. (2013) is
used. Although every effort has been made to remove the influence of aerosols and clouds on this
product, residual contamination by e.g. dust aerosols in some areas cannot be excluded.

3.1.2 Aerosol optical and physical properties
3.1.2.1 Size distribution

Aerosols are commonly characterised by a (multimode) lognormal size distribution. This distribution
2
is defined as N(r) = \/ET(Eag)r exp (— lznln(zr (/:5)) ), with Ny = [ Ooo N(r)dr the total number of
particles. Here 7; and g, are called the geometric mean radius and geometric standard deviation
respectively. For OD retrievals from infrared observations, unlike for mass retrievals, size
distributions are not that critical (Pierangelo et al., 2004). The width of the distribution especially will
determine the very small and very large particles, for which the longwave infrared measurements are
not sensitive. Following other retrieval schemes (see Table 1.1), published aerosols models (Hess et
al., 1998) and measurement data (Reid et al., 2003), we have settled on mean values of Ty = 0.5 and

ag=2.
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3.1.2.2 Refractive index

Just like the size distribution, the refractive index is a parameter that needs to be defined for the
retrieval. The specific choice of refractive index is however unlikely to influence the retrieval value
of the optical depth greatly (Peyridieu et al., 2010).

Since the 1960s only few measurements have been made in the infrared which are representative for
transported dust. The situation is fortunately improving, and in the past years, several new
measurements have become available. As an alternative to direct measurements, synthetic refractive
indices can be used, calculated from applying suitable mixing rules on refractive indices of pure
minerals. In Table 3.1 a compilation is presented of most public measured or calculated refractive
indices of dust and sand, most data can be found in the databases HITRAN, GEISA and ARIA
(Gordon et al., 2020; Delahaye et al., 2021).

Table 3.1 Public measured or calculated refractive indices of dust and sand.

Measured and Calculated Refractive Index Data of Dust and Sand in the Thermal Infrared

Description Range (cm™1) References and comments

Measurements
Dust from precipitation (midlatitude 250-50,000 Volz (1972b), samples described in Volz (1972a),
rained out mixtures of soil particles, fly tabulated in D'Almeida et al. (1991); Shettle and Fenn (1979);
ash/soot and pollen) World Meteorological Organization (1986); and referred to as

“dust-like”; termed “insoluble” in Koepke et al. (1997)
and Hess et al. (1998)

Midlatitude dust 333-4,000 Volz (1983), two size classes
Saharan dust, Niamey, Niger 250-4.000 Fouquart et al. (1984, 1987)
Saharan sand, Barbados, West Indies 250-4,000 Volz, (1973, figure)
Saharan sand, Mauritania, dry and 50% 470-6,980 ARIA (2017) measurements made by D. Peters
relative humidity
Afghanistan, Tadzhikstan sand 400-4,000 Sokolik et al., (1993, 1998)
Negev, Israel clean and dust storm 833-1,333 Fischer (1976)
(see also Sokolik et al., 1998)
Dust in Southwest United States, Texas 625-1,000 Patterson (1981), imaginary part only;

real part calculated and shown in
Sokolik et al. (1998)

Niger, Algeria, Tunisia, and the Gobi 400-4,000 Di Biagio, Boucher, et al. (2014) and
desert Di Biagio, Formenti, et al. (2014)

9 different global dust source areas (19 666-3,333 Di Biagio et al. (2017)
samples)

Mixtures
GADS/OPAC mineral component 250-4,000 Koepke et al. (1997) and Hess et al. (1998);

Mainly Volz (1973) with addition
of extra quartz absorption features
Mixture of hematite and quartz; 33-50,000 Longtin (1988)
hematite is 10% by volume
Composite clay (1/3 by weight of montmorillonite, 50-4,000 Querry (1987)
illite, and kaolinite)
Composite of hematite, illite, montmorillonite, 100-34,722 Balkanski et al. (2007)

quartz, kaolinite, and calcite

Note. Most data can be found in the HITRAN (Massie & Hervig, 2013), GEISA (Jacquinet-Husson et al., 2016), and ARIA (ARIA, 2017) spectral databases.
OPAC = Optical Properties of Aerosols and Clouds; GADS = Global Aerosol Data Set; HITRAN = HIgh Resolution TRANsmission molecular absoption database;

GEISA = Gestion et Etude des Informations Spectroscopiques Atmosphériques.
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To decide which refractive index would be used, 41 spectra with a strong dust signature were selected
over 10 days in June 2013 over the Atlantic Ocean (IASI-A data). This region was chosen, as it is
area in the world where transported dust is most easily observed, and as it is over ocean, it allows us
to focus on the refractive index without worrying about potential emissivity problems. An optimal
estimation fit of the aerosol content and interfering trace gases is outlined in Clarisse et al. (2010b)
for 7 different refractive indices. The average residuals (differences of observed- calculated spectrum)
in brightness temperatures are shown in the figure below.

' ' ' ' ‘ ' ' : ' Note that in this figure, the residual
around 1050 cm™! should be disregarded,
as no attempt was made to fit the ozone
band accurately. The Fouquart index
stands out with a high fit residual, and
fails to catch the overall V shape as
accurately as the others do. The Volz
indices on the other hand provide the
bests fit, especially the measurement
made from Barbados sand. This is not
surprising as sand found at that location
is perhaps the most representative for
long-range transported Saharan dust.
Also the Peters measurements from

Observed - Calculated (K)

-2.0

g0 0 1000 100 1200 Cape Verde sand perform well. The new
Wavenumber (cm') Di Biagio measurements provide a

Figure 3.1: Retrieval residuals with 7 different refractive reasonably accurate fit, although
indices. consistently underestimate the extinction

near 1100cm™. The OPAC index, which
was obtained from the Volz index with the addition of quartz features, gives the worst fit of all. The
strong quartz feature at 800cm™ that is clearly seen in the residual, is not seen that strongly in the
observed spectra.

From Figure 3.1 we conclude that either the Volz Barbados or the Peters Cape Verde indices are most
suitable. In the end we have decided to use the Volz indices as (1) they provided the best fit, (2) they
are readily available, and (3) they are used in many other retrieval schemes, including the ones from
project partners. Finally, Figure 3.2 shows the mean observed and calculated spectra from our test
case of 41 spectra.

10
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Figure 3.2: Mean observed and calculated spectrum with the Volz (1973) refractive indices.

3.1.3 Altitude

Aerosol dust altitude can be retrieved in the infrared for large ODs. However, the uncertainties
become too large in the general case, so that one has to resort to retrieval schemes which use
information from multiple pixels (monthly (Peyridieu et al., 2010) or regional averages using a priori
information (Vandenbussche et al., 2013)). For this reason, and for overall consistency and quality
control, we have opted here to work with a monthly climatology derived from CALIPSO (Yu et al.,
2010) observations (version 4.1).

The approach that we followed is very similar to the one presented in Tsamalis et al. (2013). As input
for the climatology the Lidar Level 2 Vertical Feature Mask was used for all CALIOP observations
from 2007 to 2013. The CALIOP data were obtained from the NASA Langley Research Center
Atmospheric Science Data Center. From this data all layers (which included multi-layered structures)
were extracted which were classified as ‘dust’, ‘polluted dust’ or ‘dusty marine’ with a high feature
QA and a confident cloud/aerosol assessment. For each such layer the mean altitude (defined as the
mean between the top and the bottom of the layer) was stored. To remove noise, only layers below 7
km were considered. Then all data were gridded (1° by 1°) and averaged for one-month periods,
calculating both the mean and standard deviation. To reduce the apparent noise, grid boxes with fewer
than 150 measurements were assigned a standard deviation of 2 and a mean of 3 km. As aresult, a
1> x 1> monthly dust altitude climatology is obtained consisting of a mean altitude (shown in Figure
3.3) and corresponding standard deviation.

11
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Figure 3.3: Dust altitude climatology (in km) derived from Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation data.

12
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4. ALGORITHM

4.1 Aerosol detection

The basis of the dust detection scheme that has been employed here has been discussed in detail in
Clarisse et al. (2013 and 2019). A flowchart of the retrieval framework is shown in Figure 4.1. We
summarize the method briefly below.

Atmospheric dust optical depth (DOD) retrieval framework

Off-line On-line
HRI setup : ________________________ : HRI calculation, data assembly
Ty ™ M Spectra subset Covariance  Spectral : 1AS/Metop TIUATA R A : Level 1 Level 2 A”!‘l”_‘”y Pre-filtering
\ \ i matrix Jacobian i ( \ || v at pilouds
\|| s OO0 5 % i _ s | | issing cata
\! ooo \ . N Lt Temp® Emissivity
) W 4 — © \ u HRI ton presure | J 100 b
SeteliiteLevell: Iterative filtering Hyperspectral Range satellite Level 1 ' — Hy Q
Index (HRI) |’
|
TS 2isiE Biesiei=h )
f Neural network setup 7 k DOD retrieval =N
1

Final product

Scene data

1
|
1
1
Line-by-line radiative :
1
1

Post-filtering

Output o
data °

1

1 HRI-to-DOD ratio

1 Confined DOD

1 Column uncertainties
T

1

1

transfer model Training set

X

HRI Neural network
DOD training
L2 data

Forward simulations

Perturbation of input parameters DOD

\ / for uncertainties calculation DOD uncertainties
\ __________________

Figure 4.1: Flowchart showing the IASI atmospheric dust optical depth retrieval framework.

A crucial feature of the method is that it does not rely on any forward simulations; instead, it uses real
observed IASI spectra of aerosol dust as the basis of the detection. In the original method, 11 averaged
dust spectra were used. To simplify further processing in the NN, a single Jacobian was sought, for
which the detection was satisfactory both over ocean and over land. Therefore, among the many
different Jacobians that were generated, one particular one, shown in Figure 4.2, was selected that
resulted in a detection that was globally satisfactory and almost equivalent with the approach that
used several classes. The Jacobian was calculated from spectra observed over Morocco in June 2013.

As well as information on the spectral signature of dust, we need to capture the spectral information
of clear spectra (uncontaminated with dust). For this, we use a global mean p. and covariance matrix
S of clear spectra both for land and over sea separately (this as explained in Clarisse et al. (2013 and
2019) was trained recursively, as detection gets better, the mean and covariance matrix can be
updated).
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Figure 4.2: The IASI-derived Jacobian used for dust detection (blue) together with the Jacobian used for the
removal of false detection due to large temperature inversions (red). The spectra shown have a reduced
sampling of 100 channels.

The actual detection is based here on linear discrimination analysis (but has also a relation with
optimal estimation (Walker et al., 2011)):

kTS~ (y - .uc)
kTS 1k
With y the observed spectrum and k = u,, — u., where u,, refers to the potential dust-polluted spectra.

The quantity y is normalized so that for clear spectra the mean equals 0 and the standard deviation
equals 1. So that 99.7% of clear spectra will have an R value within £3. Suitable thresholds on this
value can therefore detect dust. This relative distance criterion is very good at detecting dust, but
typically suffers from too many false detections due to surface emissivity features over deserts and
ice.

R(y) =

To resolve these over desert, a monthly averaged R-bias was calculated from months where no or not
much dust is to be expected as illustrated in Figure 4.3. This bias was then subtracted from each
individual observation (based on the closest grid point and only over desert). Figure 4.4 illustrates
this bias correction for northern Africa and the Middle East. The top left panel shows the calculated
bias. On the top right a visible map is shown. The superimposed contour delineates where the bias
changes sign; it is clear that these transitions correspond to changes in surface type (rocky soils
typically exhibit a positive bias and sandy soils a negative bias). The bottom panels illustrate the bias
correction on May 2013. The bottom left panel shows an uncorrected average of R values, where
despite the change of color scale, some of the features in the top panels can still be recognized. The
average of the debiased R values is shown on the bottom right and is visibly smoother than the left
panel.

To resolve the false detections over ice and snow, we decided to exclude observations over ice and
snow from the processing chain as no dust observations are expected there anyway. For this a monthly
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climatology was built using ERA ECWMF reanalysed data of ice and snow cover, where we disregard
observations where there is on average more than 30% sea-ice or 2 cm snow in addition to some
manually chosen areas.

Biases over coastal areas due to temperature inversions on warmer seasons are variable and cannot
easily be corrected. Because of this, affected observations are filtered out from further processing
using a dedicated flag. This flag is setup similarly as the dust detection flag, and an Rinv value is
calculated with the inversion Jacobian (see Figure 4.5). Whenever Rinv exceeded a value of 2 and the
dust R value, the observation is considered to be dominated by this inversion effect and is excluded
from further processing. The fraction of these on the total number of cloud-free observations is shown
in Figure 4.5 for the year 2013 (left panel). The fraction of dust detections over the remaining
observations is shown on the right. Dust detection thresholds of 2 and 3 were applied respectively
over ocean and land.

]

g & B

g

Figure 4.3: Month where the lowest dust AOD is expected over deserts. The color scale shows the months
from January (1) to December (12).
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Figure 4.4: Bias correction of the dust index R over deserts. The top left panel shows the observed bias over
the (area-dependent) months where little or no detectable dust is expected. The top right panel is a visible
map; the superimposed black line delineates the sign changes in the bias (thus corresponding to the transition
from yellow to blue in the first panel). The bottom panels show respectively the uncorrected (left) and
corrected (right) gridded May 2013 average of the R value (unitless) over land.

Figure 4.5: Percentage of cloud-free daytime observations in 2013 that are removed as they are potentially
affected by temperature inversions (left panel), and the percentage of remaining observations detected as dust
(right panel).

Since version 9 of the Dust Product, two additional bias corrections are also included. These
biases were revealed by the analysis of the time series of the daily mean R values over remote
areas (with no dust contamination) as illustrated in Figure 4.7 (top panel) for one large region
above the Indian Ocean (region 3, Figure 4.6). The first one is a systematic shift in the R values
between Metop-B and Metop-A before August 2017. A similar shift, but lower in magnitude, is
also observed between Metop-C and Metop-A. For Metop-B, the agreement with Metop-A
becomes much better after the 01 August 2017 following an update in the IASI Level 1C
radiance spectra (change of the non-linearity coefficients of Metop-B). To correct for the offset
with Metop-A, a constant R-bias evaluated from the observations of three dust-free regions (see
Figure 4.6) is simply subtracted from each individual R values from Metop-B (prior to the 01
August 2017) and Metop-C observations. The times series of the R after the correction is shown
on Figure 4.7 (middle panel).
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Figure 4.6: Dust-free regions (1: Northern Pacific, 2: Southern Pacific, 3: Indian Ocean) considered for the
calculation of the offset and the trend bias correction.

The second bias is a clear negative trend in the mean R values, likely due to the changes in the
atmospheric concentrations of long-lived species (mainly CO2 and to a lesser extent CH4 and
N>O) which influence some of the channels considered for the calculation of R. The correction for
the trend is performed by calculating the slope of the linear regression of the daily mean R value
between 2007 and 2021 derived from Metop-A data over the three dust-free regions shown on Figure
4.6. The three slopes are then averaged to derive a mean trend correction factor which is applied to
each individual observation (Figure 4.7, bottom panel). Since the Jacobian and the covariance matrix
used in the calculation of R are derived from 2013 observations, 2013 is considered as the reference
year with no correction applied on the first of July 2013. Before and after, the corrected R (R) is
simply obtained by subtracting to the initial R value the product of the slope (m) of the linear
regression by the number of days since/before 2013/07/01:

R=R-m- At

Note that the slope of the linear regression of the daily R values derived from Metop-B observations
has also been calculated. As it is very close to the one from Metop-A observations, the choice is made
to use the same correction factor derived from Metop-A for the three instruments. The value of the
offset and the trend correction is given in Table 4.1.

Table 4.1 Bias correction parameters

Bias Metop-B 0.40 Before 2017/08/01
Metop-C 0.16 Since launch
Trend Metop-A, -B, -C -2.0246 x 10*/day Relative to 2013/07/01
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Figure 4.7: Example of the time series of R values for Metop-A, -B and -C for one region in the Indian Ocean (region 3 on Figure 4.6), (top) before the biases
correction, (middle) after correction for the offset on Metop-B and Metop-C and (bottom) after correction for the trend bias.
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4.2 Retrieval algorithm

The actual OD retrieval algorithm relies on a NN. The main motivations for this approach are:

1. A multilayer perceptron with one hidden layer can approximate any continuous bounded
function arbitrarily closely. While continuity is not automatically guaranteed in our case
(for instance when the retrieval problem is under-constrained), for our problem we will
show that they can accurately map the retrieval problem.

2. Spectral fitting approaches perform the same expensive calculations (with slightly
different input parameters). It can be argued that most of these calculations must be
redundant.

3. A NN allows for easy estimating of the propagation of the uncertainties of the input
parameters on the network output (the retrieval result).

Any NN needs to be trained with a suitable set of training data, which is discussed in the next section.
Note that for the remainder of this section OD refers to the OD at 10 um.

4.2.1 Data Training set

To have maximum control over the training data, it was constructed here from forward simulations
using the forward model presented in Clarisse et al. (2010b). The radiative transfer in the forward
model uses a four stream adding-doubling approach to deal with the effects of multiple scattering.
The aerosol optical properties were calculated with Mie theory from the aerosol properties (refractive
index, size distribution) outlined in the previous section.

To make the dataset as representative as possible for actual observed dust spectra, the input
parameters (background atmosphere, viewing angle, surface height, emissivity parameters, etc.) for
the forward simulation were taken from the auxiliary parameters of the NN-ready files L1C and L2
data (but of course not the observed spectrum). In particular:

- For the year 2013, about 1 in 200 observations were selected with 0% of cloud coverage and
to have valid (not non-numeric = NaN) L2 data.

- These observations were further selected so that in 90% dust was detected.
The location of the corresponding scenes that were selected in this way are shown in Figure 4.8.

A random aerosol altitude (between 0.5 and 6.5 km) was assigned to each of the observations. The
CALIOP altitude is at this stage not used to make the simulations representative for a larger range of
different altitudes. For each of these observations, 10 forward simulations were carried out with
varying random OD (between 0 and 3, but with a higher probability assigned to the lower ODs).
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Figure 4.8: Location of the atmospheres used for building the training data set (land
observations are in red, ocean in blue).

4.2.2 Setup and training of the neural network
4.2.2.1 Input parameters

The input parameters of a NN should be extensive enough to make the problem well defined, but at
the same time, redundancy should be avoided. We first discuss the input parameters related to the
spectrum itself and to the surface temperature.

4.2.2.1.1 The V-shape and the R function

In the research phase of this project, first all available spectral channels were used as input. However,
we found that although it was very easy to train the network satisfactorily, the network itself was too
sensitive to the particular refractive index that was used in the forward simulations. In this case, it
appeared that the output was very sensitive to the small-scale features between different spectral
channels, rather than the large scale ‘V’-shaped mineral extinction feature. This is a common problem
in neural networks, and the solution is often to reduce the number of input parameters. In order to
capture the overall extinction feature, a good parameter is the R function, defined in section 4.1. For
increasing OD, the R-value increases monotonically (up to saturation levels) as is illustrated in the
figure below. Another appealing characteristic of the function is that for constant atmospheric
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parameters it is almost linearly related to small ODs. The slope is mainly determined by the thermal
contrast that is the temperature difference between the (effective) skin temperature and the
atmospheric temperature, which in turns is determined by the aerosol height.
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Figure 4.9: Dependence of the R value on altitude and dust OD for (left) an ocean and (right) a land scene.

4.2.2.1.2 The surface temperature

Another input parameter that caused trouble in the initial testing phase was the surface temperature,
which as mentioned before is essential for determining the thermal contrast, and hence the R/OD
slope. Unfortunately, even for an advanced hyperspectral infrared sounder as IASI, it can be
challenging to retrieve an accurate surface temperature, especially over deserts and in the presence of
aerosols. Indeed, the presence of aerosols almost makes it impossible to retrieve surface temperature
independently from the aerosol content. To address this issue, rather than using the L2 surface
temperature, we added an extra input parameter, set to the mean of the brightness temperature over
two selected window channels outside the main ‘V’ feature. This then gives the NN sufficient
information on the baseline to work with. Effectively, rather than training the NN to retrieve OD from
R given specified L2 info (including the surface temperature), the NN is then asked to retrieve both
the OD and implicitly the surface temperature given R and the temperature of the baseline.

4.2.2.1.3 Summary of the input data

Below we tabulate the input parameters of the NN. Care has been taken that all major variables are
present that affect the observed spectrum, although for instance not all L2 parameters used in the
forward simulations have been included, to avoid problems with overfitting. In addition, emissivity
parameters have been omitted for observations over ocean, as these are a strict function of the zenith
angle.
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Table 4.2 Input data of the neural network
Category Name
Zenith angle (degrees)

Dust layer height above sea level (km)
Auxiliary data
Temperature of the dust layer (K)

Mean surface emissivity (unitless)

Radiance data (L1C) Sum of the brightness temperature for the channels at 801 and 809.75
cm! (K)

Dust R values (unitless)

Atmospheric profiles (L2) Surface pressure (hPa)

Humidity profiles (5 levels, in partial columns, molec/cm?)

4.2.2.2 Neural network setup

The network itself is a feed-forward network with 12 inputs and 1 output (defined above), two hidden
layers with five nodes each and one output layer. The transfer function for the hidden layers is tanh,
while the linear transfer function is used for the output layer. Separate networks were setup for ocean
and land, as their R values depend on different covariance matrices.

Levenberg-Marquart was used as the training function with the ‘mean square error’ as performance
function. The dataset was divided in 90% train data, 9.9% test data and 0.1% validation data. The test
data is used to avoid overfitting, while the validation data is used to evaluate the overall performance
of the network on an independent data set.

Rather than using as output the OD, it was found better to use the ratio OD/R as output parameter.
OD’s have a large dynamic range and using those as an output would imply that the absolute error
performance function would weigh the errors on the higher ODs relatively higher than the low ODs
(and hence would result in poor performance of the network for the higher ODs). On the other hand,
a performance function based on the relative error would give too much importance to the very low
OD values. For a fixed atmospheric setup, the ratio OD/R is constant for low values of ODs, and has
in any case a small dynamic range, which circumvents the aforementioned problems.

4.2.2.3 Neural network training

Network training takes, depending on the run, about 50-100 iterations, where the performance on the
test data is in most cases just slightly below the performance on the training set. This indicates that
the network weights are not overly sensitive to the training data.
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The training performance is summarized in Figure 4.10 in terms of mean relative errors and biases
on the OD, and as a function of OD and altitude. For the calculation of the OD via OD = Rx CR, R
was assumed to be noise-free. The relative errors are calculated as the mean of the absolute value of
the relative errors for all the observations in a given altitude-OD bin. They are of the order of 10%,
except at the lowest altitudes, where they reach 25%. The biases are calculated as the mean of the
relative errors. They are mostly close to 0, with a few exceptions again for low altitude. In practice,
the uncertainties on all input parameters will lead to larger uncertainties in the retrieved dust OD than
the training performance suggests.

Ocean - Relative errors (in %) Ocean - Biases (in %)

Altitude

0 05 1 1.5 2 25 3
Land - Biases (in %)

0 0.5 1 1.5 2 25 3

Land - Relative errors {in %)

Altitude
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OD at 10 pm 0D at 10 pm

Figure 4.10: Performance of the NN on the training data set, in terms of relative errors (left panels) and
biases (right panels) (colorscale shows percentage of relative errors/biases) as a function of OD (OD =
optical depth) and altitude for ocean (top panels) and land (bottom panels) observations.

4.2.2.4 Pre-filtering

Prior to running the network, the observations undergo a prefiltering operation that selects all spectra
for which the retrieval should be performed. This flag determines whether an OD will be retrieved
for each observation. It is set if:

o Snow/ice mask is off
o Cloud coverage <=10%
o [TASI L2 is available

Since the version 9 of the Dust Product, it was decided to use an alternative cloud product to the
operational IASI Level 2 product for the identification of the cloud-free scenes. Indeed, the latter is
known to suffer from different issues especially from (1) some discontinuities in the current data
record due to different versions of the operational Level 2 cloud product used simultaneously and (2)
false cloud detections in the center of large dust plumes (at least for the earlier versions of the cloud
product). In version 9, the discrimination between cloud and clear scenes relies on a cloud detection
algorithm developed recently by Whitburn et al. (2022). It is based on a supervised neural network
(NN) and uses the most recent version (v6.5) of the IASI Level 2 as a reference dataset. The NN
product has been demonstrated to be both sensitive to cloud detection and consistent over the whole
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IASI time series and between the different instruments on board Metop-A, -B and -C. It is also able
to differentiate clouds well from dust plumes.

4.2.3 Example

Retrievals for 15 June 2015 are shown in Figure 4.11 for the morning (top) and evening (bottom)
overpass. Gaps in the coverage are mostly due to clouds but also due to the other prefilters (see section
4.2.2.4) and postfilters (see section 4.2.4.2). Enhancements are observed where they are expected,
that is, over land: Middle East, North Africa, parts of Europe, and central and south Asia, and over
ocean: the North Atlantic Ocean, the Caribbean Sea, the Mediterranean Sea, the Red Sea, the Arabian
Sea, and Indian Ocean. Especially noticeable is the large dust plume over North West Africa and the
North Atlantic Ocean, which is fairly consistent across land-ocean and morning-evening overpass.
Over remote regions, the OD values are close to and centered around O but are noticeably less noisy
over ocean than over land, a direct consequence of the fact that detection is easier over ocean due to
the more uniform surface emissivity. Certain land areas also exhibit small local biases (e.g.,
southeastern part of Africa).

The estimated total uncertainties for 15 June 2015 are shown in Figure 4.12, both as a global
distribution and as histogram. In the presence of detectable dust, uncertainties are of the order of 15—
30%. Elsewhere, the majority of the uncertainties are in absolute value in the 0.01-0.02 range over
ocean and 0.04-0.06 over land. The uncertainties over land during the morning overpass are
noticeably smaller due to the better thermal contrast. Finally, note that over some land areas (e.g.,
South America), some scan angle dependence could be observed for dust ODs close to 0. The reason
for this is not clear and it is also not easily corrected for, as it seems present in the dust index itself.
Fortunately, such a dependence is not seen in the areas most affected by dust.
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Figure 4.11: IASI-retrieved dust OD at 10um (unitless) for 15 June 2015 for the morning (top) and evening
(bottom) overpass. The insets show the probability histograms (frequency of each OD value) of the retrieved

values over the entire globe.
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Figure 4.12: [ASI-retrieved absolute OD uncertainties (unitless) for 15 June 2015 for the morning (top) and
evening (bottom) overpass. The insets provide the probability histograms (frequency of each OD uncertainty
values) of the global data.

4.2.4 Uncertainty characterisation
4.2.4.1 Systematic uncertainty

Systematic errors include biases introduced beyond our immediate control, due to the choice of the
size distribution, refractive index and forward model. We have not carried out our own error analysis,
but here we rely on studies from the LMD group (Pierangelo et al., 2004), since these in essence all
stem from the forward model. The size distribution and refractive index were estimated to yield an
error of maximum 10% each. Other forward model errors are expected to be negligible. In view of
this we conservatively estimate our systematic error to be of the order of 25%.
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4.2.4.2 Random uncertainty

Here we discuss the uncertainty caused by uncertainties in the input parameters and input of the NN.
The nature of the NN implies that we can very easily calculate how these errors propagate on the final
OD retrieval. We attribute the following uncertainties o to the five input parameters:

1. Aerosol altitude. Here we use the standard deviation of the CALIOP heights. car.t= Gcal.
2. TASI instrumental noise on R. The R-value, has by definition an uncertainty of cr=1.

3. TASI instrumental noise on the input baseline channels. We use op1.=0.28K.
4

. Temperature profile. A value of otemp=1 K has been applied for the whole profile
(Pougatchev et al., 2009, August et al., 2012).

5. Humidity profile. A value of omum=10% has been applied for the whole profile
(Pougatchev et al., 2009, August et al., 2012).

In addition to these, there is the error caused by the imperfect training of the NN, this was set at onn
=25%. Using these we can calculate the total error on the OD as

90D 2 90D \* (00D 2 90D \* /00D 2 ,
200 = |(zomr) + (G on) +(Ggom) +(Gror) + (G omm) +ow)

4.2.5 Post-processing

At the end of the retrieval, the measurements are postprocessed to remove any clear erroneous
retrievals or retrievals for which the measurement carries no meaningful information. A first criterion
removes large negative retrievals, below a dust OD of —0.1 or with an R value below —3. These are
obvious candidates as their large unphysical value goes beyond the expected random noise. Next, all
retrievals are removed for which the conversion ratio exceeds 0.15, corresponding to conditions
where the measurement sensitivity is extremely low. Finally, the observations are also flagged if both
the absolute and relative uncertainty simultaneously exceed a threshold of 0.15 and 50%, respectively.
The criterion on the absolute uncertainty is mostly relevant for observations with little or no detectable
dust, while the criterion on the relative uncertainty is meaningful for observations with a detectable
dust signature. As a whole, this postfiltering procedure keeps about 98-99% of the ocean
measurements and about 60-97% of the land data (worst in the winter nighttime overpass, best in the
summer daytime overpass).
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