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1. INTRODUCTION 

1.1 Objective 

This document describes the NH3 retrieval algorithm (level 2) for IASI onboard Metop-A, B, and 

C, developed at ULB and for which an implementation at EUMETSAT has been agreed in the 

frame of the AC SAF CDOP-3 project.  The retrieval algorithm is part of a chain of retrieval 

algorithms called the ANNI (Artificial Neural Network for Infrared Atmospheric Sounding 

Interferometer, IASI) retrieval framework, for the retrieval of short and medium long-lived trace 

gases, see Franco et al. (2018).  The historical development, theoretical basis and background 

has been documented in a series of papers: Whitburn et al. (2016), Van Damme et al. (2017), 

Franco et al. (2018) and Van Damme et al. (2021). Most of the text and some figures below are 

taken verbatim from these publications without referencing these explicitly each time. Some 

material is also taken from Clarisse et al. (2019). 

1.2 IASI instrument 

IASI is an infrared Fourier transform spectrometer developed jointly by CNES (the French space 

agency) with support of the scientific community (for a review see Hilton et al. (2011)), and by 

EUMETSAT. IASI is mounted on-board the European polar-orbiting Metop satellite with the 

primary objective to improve numerical weather predictions, by measuring tropospheric 

temperature and humidity with high horizontal resolution and sampling, with 1 km vertical 

resolution, and with respectively 1 K and 10% accuracy (Camy-Peyret and Eyre, 1998). As a 

second priority, IASI contributes to atmospheric composition measurements for climate and 

chemistry applications (Clerbaux et al., 2009). To reach these two objectives, IASI measures the 

infrared radiation of the Earth’s surface and of the atmosphere between 645 and 2760 cm-1 at 

nadir and along a 2200 km swath perpendicular to the satellite track. A total of 120 views are 

collected over the swath, divided as 30 arrays of 4 individual Field-of-views (FOVs) varying in 

size from 6 × 6 × π km2 at nadir (circular 12 km diameter pixel) to 10 × 20 × π km2 at the larger 

viewing angle (ellipse-shaped FOV at the end of the swath). IASI offers in this standard observing 

mode global coverage twice daily, with overpass times at around 9:30 and 21:30 mean local solar 

time. The very good spatial and temporal sampling of IASI is complemented by fairly high 

spectral and radiometric performances: the calibrated level 1C radiances are at 0.5 cm-1 apodized 

spectral resolution (the instrument achieves a 2 cm optical path difference), with an apodized 

noise that ranges below 2500 cm-1 between 0.1 and 0.2 K of a reference blackbody at 280 K 

(Hilton et al., 2011).  

1.3 Retrieval overview 

A schematic overview of the ANNI retrieval is presented in Figure 1. The actual calculation of the 

columns (red boxes in Figure 1) relies on two computational steps: 

1. The calculation for each IASI observation of a hyperspectral range index (HRI). This quantity 

is a very sensitive, broadband spectral index that quantifies the signal strength of a target absorber 

in a radiance spectrum. 

2. The conversion of the HRI into a total column abundance via an artificial feedforward neural 

network (NN). 
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In addition to the HRI, the NN relies on a series of auxiliary parameters related to the state of the 

atmosphere and of the surface. Perturbations to the input data of the NN allows quantification of 

the uncertainties associated with single-pixel retrieved columns. Appropriate filtering of the data 

(before and after the retrieval) removes cloudy scenes and observations with limited or no 

sensitivity to the target trace gas. Finally, in general (for most species in the ANNI retrieval 

framework), a calibration offset is added to the retrieved columns to account for the constant, 

climatological background column of the target gas in the atmosphere (green box in Figure 1). 

However, this last step is not done for NH3, as background concentrations are extremely low and 

below the detection limit of IASI.  

While the retrieval itself is simple and fast, the initial setup (blue and red boxes in Figure 1) of the 

HRI and NN is nontrivial. In particular, both rely on weight constants that must be determined 

with care beforehand from a data set of real (for the HRI) and synthetic (for the NN) IASI spectra. 

The setup of the HRI and NN and the training of these weight constants is detailed in sections 2.1 

and 2.2. The actual retrieval and examples are presented in section 2.3.  

 

   

Figure 1.  Conceptual flowchart of the ANNI retrieval method of trace gases.  
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2. ALGORTIHM DESCRIPTION 

2.1 HRI 

2.1.1 Definition 

Proposed by Walker et al. (2011), the HRI is a dimensionless index that quantifies the strength 

of the spectral signature of a target gas in an observed spectrum y: 

 

where K is a spectral Jacobian, Sy a covariance matrix, and �̅� the mean spectrum generated from 

a representative data set of background spectra associated with a climatological column of the 

target gas, and N an extra normalization factor (see further). The HRI is conveniently 

normalized to have a mean of zero and a standard deviation of one when calculated on the data 

set of background spectra. The HRI is particularly suitable for the detection of highly variable 

infrared absorbers, like NH3, which are not observed in every spectrum. In this case, the 

climatological column amount is close to zero and the background spectra are those without 

observable signature of NH3. The HRI can encompass spectral ranges of up to several hundred 

cm-1 to exploit all the channels in which the target species is absorbing. This results in a 

substantial gain of sensitivity over other detection methods and makes it highly suitable for the 

detection of broadband absorption features, as demonstrated with the detection of a series of 

aerosol types in Clarisse et al. (2013).   

2.1.2 Spectral range and Jacobian 

Larger spectral ranges lead in principle to a more sensitive HRI. However, this is true only in 

the linear regime in which the covariance matrix describes a normal distribution. In practice, it 

can be advantageous to exclude spectral ranges where nonlinearity prevails. For instance, the 

spectral range 1,100–1,200 cm-1 can exhibit pronounced spectral surface emissivity features 

over deserts. In addition, it might be useful to avoid a spectral interval in which another species 

with a similar spectral signature is absorbing. For NH3 the range was set to 812–1,126 cm-1 that 

exploits the strongest lines from its 𝜈2 vibrational band. The range was not chosen larger to 

minimize interferences with surface emissivity features. The Jacobian K is the derivative of the 

radiance spectrum with respect to the column abundance of the target species, and this was 

generated by the line-by-line radiative transfer model Atmosphit (Coheur et al., 2005) for a 

standard atmosphere. 

2.1.3 Characterization of mean and covariance 

For each target species, the HRI calculation also depends on a generalized covariance matrix 

Sy and an associated background spectrum �̅�. The covariance matrix determines the weight of 

each spectral channel, and ideally expresses the variability and covariance of all interfering 

species, but explicitly not that of the target species (Walker et al., 2011). Such a matrix can be 

obtained from a representative set of IASI spectra with a constant, climatological column 

amount of the target species. For short-lived trace gas absorbers like NH3, the pair (Sy, �̅�) can 

straightforwardly be constructed from spectra with no observable signature of the gas (the 

(1) 
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associated climatological column is then close to zero). To select such spectra, an iterative 

approach can be followed (Clarisse et al., 2013). The approach goes like this. First, a 

representative set of IASI spectra is build, consisting of all the spectra from the fifteenth of each 

month of 2013 but sampled to yield a spatially uniform distribution (to avoid over-representing 

polar regions). This entire set is then used for the generation of a first (Sy, �̅�) pair. This allowed 

the production of a first set of HRI, which in turn was used to remove the spectra with detectable 

signatures of the trace gas (typically with an HRI above 3 or 4; see below). The reduced set of 

spectra allows the calculation of a better (Sy, �̅�) pair. Repeating this process several times 

(typically at least 10 times) leads to convergence of the set of spectra, of the corresponding 

(Sy, �̅�), and of the HRI. 

An even more sensitive HRI could be constructed by considering only the spectra with an HRI 

below one. Using such a low threshold removes much more spectra; including those with 

spectral signatures barely above the instrumental noise and even spectra without detectable gas 

quantities. This is obvious for NH3, where spectra above remote oceans frequently exhibit HRIs 

below one. Nevertheless, removing such spectra leads to a more sensitive HRI and does not 

generate anomalies (e.g., false detections). There is, however, a side effect, in that the initial 

normalization of the HRI is not preserved in the iterative process. This is the reason why an 

additional normalization factor (N) is needed in equation (1). Note that this factor N needs to 

be recalculated at each iteration. The normalization factor N was calculated as the standard 

deviation of the HRI over a remote ocean area, where no NH3 is expected.   

In total 24 iterations were carried out for the construction of the covariance matrix. In addition 

to all observations with an HRI below one, also observations over selected desert regions were 

included at each iteration, as no NH3 is expected for those, and to make the HRI more robust 

for the emissivity features found over deserts. 

2.1.4 Detrending and anomaly correction 

Analysing the initial time series of the mean HRI over remote oceans, we noticed (i) offsets that 

coincided with changes to the IASI instrument, (ii) a slowly decreasing trend and (iii) a residual 

dependence on H2O. In the rest of the section we outline the first order corrections that were 

introduced to account for all of these. Referring to Figure 2, the following corrections were 

introduced: 

(b) The declining trend over remote areas that was identified in the HRI of NH3 is apparent in 

the top panel of Figure 2. As the trend is linear, and as there are a couple of weak CO2 absorption 

bands in the 812–1126 cm-1 spectral range, this trend is most likely due to the ever increasing 

concentrations of CO2 . To correct this bias, we analyzed monthly averaged HRI from IASI 

spectra measured over a remote location in the Pacific Ocean (17°N–22°N; 153°W–158°W) 

versus time. The linear regression (y = −8.69 × 10-5 x + 63.75, r = −0.84, with x and y being the 

time (in months) and the HRI (no unit), respectively) models the relationship well and was 

therefore used to apply a first-order correction to the calculated HRI.  

(c) A change in the IASI Level 1C occurred on 18 May 2010 and corresponds to an 

improvement of the spectral calibration. An empirical correction was introduced as a function 

of latitude and day of the year. The precise offsets were computed as the difference between 

the median HRI calculated before and after the 18 May 2010, the median being calculated in 1° 

latitude bins from all the HRI with an absolute longitude above 160° and an absolute value 

below 5. This difference was calculated for each day of the year and applied to the HRI 

calculated before the 18 May 2010 (Figure 2, panel (c)).  
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Figure 2  IASI/Metop-A (solid lines) and IASI/Metop-B (dashed lines) NH3 Hyperspectral Range Index (HRI, no unit) 

monthly time series over three remote locations: North Atlantic Ocean (20°N–40°N; 30°W–60°W), Pacific Ocean (0°S–

30°S; 125°W–175°W) and Indian Ocean 5°S–25°S; 55°E–95°E). From top to bottom: (a) not corrected time series and 

successive implementation of corrections (b)–(e). 

 

(d) On 7 June 2017, a minor change in the configuration parameters for the apodization function 

of IASI/Metop-A instrument had a clear impact on the calculated HRI (Figure 2, panels (a)–

(c)). This recalibration made IASI/Metop-A more in line with IASI/Metop-B instrument. As 

the HRI is based on a covariance matrix from spectra of the year 2013, the HRI calculated after 

the recalibration for IASI/Metop-A have to be adjusted, as well as the entire time series of 

IASI/Metop-B. Comparison of the HRI values on 6 June with the ones from 8 June 2017, 

revealed a temperature dependence in the offset. A satisfactory correction was obtained using 

a linear regression (y = −3.5 × 10-3 x − 0.69, r = 0.89, with x being the temperature of the 

baseline (in K) and y the median of the HRI difference between the 6 and the 8 June 2017 (no 

unit); see Figure 2, panel (d)).  

(e) Finally, a H2O correction was implemented, as a dependence of the HRI to H2O was found 

over remote oceans. This does not change the behaviour of the HRI over time, but helps to 

debias it. A H2O-dependent bias was determined from a region assumed NH3-free by 

calculating the median over sea for 30 days in 2015 over bins of 0.1 × 1023 molec cm-2 of H2O 

total column. These median values are then used to correct the HRIs before using them as an 

input in the neural network (i.e. after the correction, the mean HRI over remote oceans is closer 
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to zero). Panel (e) of Figure 2 presents the corrected monthly time series of HRI over three 

remote locations. It shows that the corrections allow us to obtain a coherent time series over the 

IASI operating period, centred around zero and as expected without noticeable jumps or trends. 

2.2 The neural network 

The spectral signature (the HRI) of a target gas is a complex function of the species abundance 

and of all the other parameters entering into the radiative transfer, such as the state of the 

atmosphere (thermodynamic parameters) and surface, interfering species, and the viewing 

angle. The main idea of the current retrieval approach is to use a NN to approximate the 

complex inverse function that maps the HRI and the auxiliary parameters to a column 

abundance. A NN consists of interconnected nodes (small mathematical functions) organized 

in layers, as illustrated in Figure 1 (lower red box). The weights of the nodes are trained to best 

fit the complex analytical relationships that bind any set of input variables feeding the network, 

to the corresponding output variable. NNs learn from the presentation of examples, and so 

training sets are required consisting of matching input (auxiliary parameters, column 

abundance) and output data (IASI spectrum and associated HRI). The construction of these 

training sets are detailed in the next section. We also describe the setup of the network, the 

training itself and the performance on the training set.   

2.2.1 Training Set Assembly 

The performance of a NN depends largely on the quality of the training set, which should be as 

comprehensive and representative as possible. This means that in our case, the set should cover 

a large range not only of the column abundances of the target trace gas (and associated HRI) 

but also of the auxiliary parameters on the state of the atmosphere and surface. Each IASI 

observation (L1C radiance spectra) is distributed operationally with corresponding Level 2 data 

consisting of a temperature, pressure, H2O profile, and surface temperature (August et al., 

2012). These were used here as input for the auxiliary parameters of the training data set. We 

selected approximately 500,000 IASI L2 data over the year 2013, regularly sampled in space 

and time to ensure a comprehensive and representative data set.  

 

Figure 3 Summary statistics on the training set: distribution of thermal contrast vs NH3 total columns (left), and 

spatial distribution vs thermal contrast (right). 

 

As the surface temperature and emissivity vary more over land than over oceans, 66 % of the 

data were chosen to be associated with land observations. Additional data were added for the 
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higher and lower thermal contrasts TCs (defined as the temperature difference between the 

surface and the air layer located just above) to ensure that extreme TCs are sufficiently 

represented within the training data set. Finally, a random column of the target trace gas was 

associated with each sample in the data set. These random columns were generated by randomly 

scaling a vertical profile of the gas (see below) from 1 × 1014 molec/cm2 up to 5 × 1017 

molec/cm2.  Figure 3 illustrates the spatial distribution of the resulting data set as well as the 

sampling as a function of thermal contrast and total column. IASI spectra were simulated for 

each sample in this data set using Atmosphit. Due to small remaining forward model errors, it 

was found that HRI values produced by Atmosphit can be biased. For this reason, a spectrum 

was simulated for each sample with and without the target trace gas. The HRI of the simulation 

without the target gas was then used to offset the HRI of the other simulation, in such a way 

that an HRI value of zero always corresponds to the absence of the trace gas. Note that since 

Atmosphit does not simulate the clouds, the resulting training data set is cloud-free. 

As discussed in Whitburn et al. (2016), the choice of the vertical profile of the target gas used 

in the forward simulations is important. For this reason, the vertical profile of NH3 was 

parameterized with a Gaussian function as   

 

Two different training sets have been built (see Figure 4): (a) One representative for 

observations close to emission sources (thus with the peak concentration at the surface), where 

z0 was fixed to 0 km and where sigma (σ) was assigned a random number between 100 m and 

6 km. (b) One representative for transported NH3, with a peak concentration above the surface. 

Here z0 was assigned a random number between 0 and 20 km.   

 

Figure 4 Example of GEOS-Chem model (blue) and fitted (red) profiles (left) above a source area and (right). 

2.2.2 Network Setup, Training, and Evaluation 

In theory, the input parameters could consist of all the variables used for the forward simulation 

of the spectra. However, this would result in a very large and difficult data set to train NNs. 

Instead, it is advantageous to keep the size of the NN as small as possible by only taking into 

account the parameters that affect most the output variable. A satisfactory network performance 

was achieved by training with the following input parameters: 

• HRI 

• temperature profile (Tprof) at 0, 0.5, 1, 1.5, 2, 2.5, 3, 5, 7, 10, 13, 16, 19, 25 and 30 km 

• skin temperature (Tskin) 

(2) 
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• surface pressure (Psurf) 

• emissivity (𝜀surf): average over selected channels in the atmospheric windows 

• H2O partial column profile (H2Oprof) between 0-1, 1-2, 2-3, 3-5, 5-7, 7-10 and 10-30 km 

• satellite viewing angle (Z)  

• peak NH3 altitude (z0) 

• Spread of the NH3 profile (σ) 

 

The HRI-to-column ratio was adopted as output of the NN instead of the gas column itself. The 

rationale behind this is explained in detail in Van Damme et al. (2017) and Whitburn et al. 

(2016). In brief, using the ratio allows (1) for a better training of the NN owing to its smaller 

dynamic scale and (2) to translate the instrumental noise—which is part of the HRI—in a linear 

way to the retrieved column. In particular, this guarantees that the retrieval on noisy HRI does 

not lead to a biased product. However, the downside is that slightly negative columns can be 

retrieved because of the noise on the HRI.  

 

Figure 5 Performance evaluation (top: error, bottom: bias, both in %) of the emission network (left four panels) 

and transport network (right four panels), with and without adding noise. The median value is shown in each grid 

box, which removes the effect of outliers and allows us to better assess the real performance of the network. 

 

Based on the training performances, a NN that consists of two computational layers was setup 

with each 12 nodes. A multilayer NN is usually better at tackling nonlinearities than a many-

node, single-layer network. We have evaluated and improved the setup of the different NNs 

using 2-D error plots. These summarize the performance of the NN on the training set in terms 

of relative error and biases as a function of gas total column and thermal contrast. The 

performance plots are presented in Figure 5. Note that normally distributed noise was added to 

all the input data to evaluate the performances as realistically as possible (right panels). The 

final NNs are seen to be practically unbiased for positive TC. For the non-background gas 

abundance, the relative errors range from 10% to 50%, with the highest errors found for the low 

gas columns. The relative errors increase for lower background columns (top panels in Figure 

5) where the columns approach the IASI detection threshold. However, since the biases remain 

low (bottom panels), most of these errors can be averaged out by considering multiple 

observations (thus by averaging the retrieved columns in time or space). In addition, as can be 

expected, the NNs do not perform well for observational scenes with low negative TC. 
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2.3 Retrieval, Uncertainty and Data Post-filtering 

2.3.1 Retrieval 

The actual retrieval consists first of collecting the required 

input data, that is, the HRI of the observed spectrum and the 

matching auxiliary data. Most of the auxiliary data is directly 

taken from the IASI L2 (except the viewing angle, which is 

part of the IASI L1). As the sources of NH3 are mostly 

continental, the columns over land that are included in the 

final ANNI product are those retrieved with the NN 

developed specifically with the emission profile, assuming 

z0=0 and σ equal to the ERA5-derived planetary boundary 

height monthly day/night climatology (but with the 

minimum capped at 100 meter, see Figure 6). The latter was 

built based on over 10 years of ERA5 data (from October 

2007 to December 2018). Conversely, the retrievals 

performed with the transport-NN are used for the 

measurements over the oceans and we assume z0 = 1.4 km and σ = 0.905 km (see Whitburn et 

al., 2016 for a justification). The NN is then fed with these data as illustrated in Figure 1. Finally, 

the inverse of the HRI-to-column ratio obtained as output of the network is multiplied by the 

associated HRI, yielding the total column of the target species. Before the different networks 

are applied to the real IASI measurements, all satellite observations with invalid L1, L2 or with 

a cloud fraction above 25% inside the IASI field of view are filtered out.  

 

Figure 6 Example ERA 5 climatology of the planetary boundary layer for April, morning (left) and evening (right). 

2.3.2 Uncertainty 

An (absolute) uncertainty is estimated for each retrieved column, by propagating the 

uncertainties of the different variables feeding the NN (see Table 1): 

𝜎𝑁𝐻3
2 = √∑ (

𝜕𝑁𝐻3

𝜕𝜎𝑖
2 )

2

𝜎𝑖
2

𝑖

   

Parameter Uncertainty 

Tprof 1 K 

H2Oprof 10% 

Tskin 1 K 

Z 0 

Psurf 500 Pa 

𝜀surf 0.01 

z0 0 

σ 100 m 

HRI 1 

Table 1. Assumed uncertainties on 

the input parameters. 

(3) 



 

REFERENCE: 

ISSUE: 

DATE: 

PAGES: 

SAF/AC/ULB/NH3_ATBD 

1.0 

25/10/2021 

Page 12 of 15 

 

12 

 

2.3.3 Quality flag 

As the retrieval does not use an a priori, it is poorly constrained in case of low sensitivity. 

Fortunately, the corresponding measurements can quite readily filtered out. The choice was 

made to define the retrieved columns into three distinct, mutual exclusives groups: 

 

1. Stringent quality assurance 

For these observations, the following conditions are both satisfied: 

• | NH3 column/HRI | < 15 × 1015 molec/cm2 

• | NH3 | > 0 molec/cm2 or |HRI| < 1.5 

 

2. Weak quality assurance 

These are observations, which do pass the stringent quality assurance test, but satisfy the 

following weaker conditions: 

• | NH3 column/HRI | < 30 × 1015 molec/cm2 

• | NH3 | > 0 molec/cm2 or |HRI| < 1.5 

 

 

3. No quality assurance 

These are all the remaining observations. 

2.3.4 Note on negative columns 

The retrieval, by construction can return negative columns (inherited from negative HRIs and 

the fact that the neural network outputs the HRI-to-column ratios). While these clearly lack a 

clear physical interpretation, they are an integral part of the product and are not meant to be 

removed systematically. The use of negative physical quantities in satellite data is not new. 

They can for instance be found in MODIS AOD data starting from the Collection 5 (Levy et 

al., 2007). In this paper the authors call such negative values “statistically imperative” for 

creating an unbiased data set. For IASI observations of NH3, which are expected to be 

measurable only in part of the data (i.e., in large areas and or certain periods, the retrieval should 

ideally average to 0), the necessity of having negative retrievals for an unbiased product 

becomes even more important. Our retrieval setup deals automatically and in a natural way with 

the instrumental noise through the output of HRI-to-column ratios. As long as the HRI’s are 

unbiased, an unbiased product is guaranteed, and the NN does not need to worry about 

instrumental noise and can assume that the measurements are noise-free. 

It is however recommended to remove negative columns from time or space averaged data (an 

average over a large area, or a seasonal average), as these are not expected to exhibit important 

negative columns on average. 

2.3.5 Example: A single overpass 

Example retrievals of the columns and associated uncertainties are shown in Figure 7 for a 

morning and overpass over Europe respectively. In the morning overpass, thanks to a good 

thermal contrast, the post filter does not remove many observations (apart from a few large 
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negative ones). This is in contrast to the evening overpass, where most observations are 

removed because of lack of sensitivity. 

 

Figure 7. Example NH3 retrievals from IASI-B on 24 April 2020 (AM, top; PM, bottom). Grey pixels are either cloudy 

or pixels that do not pass the post filter. 

2.3.6 Example: All season average 

An all-seasonal average, for 11 year of IASI observations is shown in Figure 8. 

 

 

Figure 8 Global average of NH3 seen by IASI during the morning overpass (2008-2018). 
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2.4 Advantages of the retrieval algorithm 

Computational Efficiency. The only parameter retained from the measurement is the HRI 

value. Calculating these is straightforward and computational time is negligible. Calculating 

the neural network function is equally straightforward. 

Full Spectral Range. The HRI takes into account a wide spectral range, which contains all the 

important NH3 lines in the infrared, and thereby takes full advantage of the thermal infrared.  

Low Dependency on the Forward Model. The forward model is only of secondary importance 

for the calculation of the Jacobians in the HRI and for the HRI calculated from the NN training 

data.   

No A Priori Information. No a priori information on the column is used. This means that all 

the information from the final measurement comes from the spectral measurement (but 

potentially with very large associated uncertainties). Therefore, in contrast to optimal 

estimation approaches, no averaging kernel needs to be applied when carrying out comparison 

with other measurements/models. A priori information on the vertical profile shape is used 

though.   

Full Atmospheric State. Because the number of input parameters is not limited in the NN, the 

full temperature, humidity, and pressure profiles can be taken into account. This property is 

shared with the spectral fitting approaches.  

Full Uncertainty Analysis. By perturbing the input parameters, a full uncertainty 

characterization can be made of how the uncertainty of each of the input parameters propagates 

to the final result. This analysis can be carried out on a per-pixel basis. 

Reduced Bias. Rather than mapping the input parameters directly to a NH3 column, the output 

of the NN is a scaling factor, which after multiplication with the HRI gives the column. In this 

way, the instrumental error on the HRI is translated in a linear way in an error on the column, 

and negative columns become possible. At the same time, this implies that the algorithm itself 

is relatively unbiased by design (this is assuming that the HRI values are not biased).  
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